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Abstract

Visual prostheses have the potential to restore sight to
the visually impaired, but current devices often deliver sub-
optimal visual experiences due to physical limitations and
spatial and temporal distortions. To address these chal-
lenges, recent approaches have employed deep learning al-
gorithms and computational models to optimize stimula-
tion strategies. Additionally, some studies integrate patient-
specific information to personalize the visual experience.
Our work introduces a novel neural network architecture
that incorporates a vision transformer to analyze both vi-
sual input and patient-specific parameters, aiming to reduce
these distortions. Results demonstrate that Vision Trans-
formers enhance patient perception on the MNIST dataset
compared to previous methods and effectively handle more
complex images from the CIFAR-10 dataset. These findings
suggest that our approach could advance visual prosthetic
technology, providing more effective and personalized solu-
tions for visual restoration.

Keywords— Computer Vision, Simulated Prosthetic Vision,
Visually impaired assistance

1. Introduction
Visual impairment affects millions of individuals worldwide, sig-
nificantly impacting their quality of life and ability to perform ev-
eryday tasks. Among the various causes of visual impairment,
degenerative retinal diseases, such as retinitis pigmentosa and age-
related macular degeneration, are some of the most prevalent [18].
These conditions gradually destroy the photoreceptor cells in the
retina, leading to progressive vision loss and, in severe cases, com-
plete blindness. In response to this growing health challenge, reti-
nal prostheses have emerged as a promising solution to restore vi-
sion for individuals with such diseases. These advanced devices
aim to replace the function of lost photoreceptors by delivering tar-
geted electrical stimulation to the remaining retinal cells through
electrodes implanted in the retina. This stimulation generates neu-
ral signals that the brain interprets as visual information, known as
phosphenes.

Despite their potential, retinal prostheses face several chal-

lenges that must be addressed to improve their effectiveness and
usability. First, technical limitations, such as restricted field of
view (FOV) and low resolution complicate the visual experience
[14]. To mitigate these issues, computer vision algorithms are
developed to analyze visual information and highlight relevant
information for the user, tailored to specific tasks, such as face
recognition, object detection, or navigation [12, 17]. Secondly,
users in clinical trials have described phosphenes as elongated
shapes [2] with delayed onset and offset [6], which hinder envi-
ronmental recognition, especially in dynamic scenes where quick
and accurate perception is crucial. Additionally, all these effects
vary across patients, highlighting the need for personalized ap-
proaches in designing retinal prostheses to optimize visual per-
ception [8, 13]. In this context, two solutions have been proposed.
On the one hand, some research focuses on electric pulse parame-
ters [11] and precision in cell stimulation [10]. On the other hand,
the combination of realistic models with deep learning algorithms
is being used to mitigate both spatial and temporal distortions by
optimizing stimulation strategies [3, 15, 19, 20].

Our current and ongoing work aligns with the latter approach,
addressing variations across users. The goal is to predict the indi-
vidual electrode stimulation signal in order to produce a visual per-
ception that resembles the target image. Therefore, the deep net-
work model is an autoencoder, whose encoder part predicts the in-
put electrode stimuli from a given target image (i.e. the frequency,
amplitude, and pulse duration of each electrode signal), while the
decoder transforms such stimuli to a percept: a visual represen-
tation of what a real patient would perceive, which the network
outputs as an image.

As previous studies show [1, 13] the elongations and deforma-
tions of the phosphenes depends not only on the stimulation signal,
but also on some case-specific parameters related to the implant
(e.g. location in the retina, size, electrodes positions) and the pa-
tient (e.g. body response to electrode stimulation, nerve fiber bun-
dles). In our approach we use the parametrization and decoder net-
work proposal from [7], which uses a physically-validated model
with 13 parameters. Here, we keep the decoder fixed following
the model and assume those parameters are an additional input
to the network, although they could be estimated effectively with
Bayesian approaches [5, 7].

Previous work has utilized fully-connected networks (FCNs)
to predict stimuli from target images and parameter vectors [7].
However, FCNs are limited by their inefficiency with image data,
as flattening images results in the loss of spatial relationships
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Figure 1. Schematic of the autoencoder architecture.

within the image. In addition, they can be computationally expen-
sive and challenging to scale with high-dimensional, multi-modal
data (e.g. images and parameter vectors). To address these limi-
tations, we propose a transformer-based architecture [4, 16] as an
encoder model for estimating electrode stimulation signals in pros-
thetic vision, which better preserves spatial relationships and man-
ages complex multi-modal data. We introduce a new architecture
tailored for visual prosthesis where each phosphene and parame-
ter vector is represented by unique tokens within the transformer
model, enabling it to dynamically adjust focus and improve learn-
ing from diverse data inputs. This helps the transformer to learn
how the patient parameters interact with the phosphenes, and how
the phosphenes interact with each other. Additionally, our method
is well-positioned for future expansion to video data, since trans-
formers excel at capturing long-range dependencies in sequential
data, which will help to address temporal aspects of prosthetic
vision. In this extended abstract, we outline our approach and
present preliminary results demonstrating its effectiveness across
different datasets.

2. Methods
In this section we are going to describe our proposed deep neu-
ral autoencoder. It consists of two main parts: the encoder, that
produces the parameters of stimulation of each electrode from a
given target image and the patient parameters, and the decoder,
which takes the predicted stimuli and the patient parameters and
produce a visual representation that resembles what a real patient
would perceive. As stated above, the decoder is based on the ana-
lytical forward model from [7], and thus no parameters are trained
or optimized. Therefore, our main contribution lies on the en-
coder part of the network. Inspired by [7], since their proposed
forward model is neither linear nor invertible, our approach con-
sists in training a neural network model to optimize the inverse
model of the decoder. In Fig. 1 there is a diagram of our model to
follow this section.

Our encoder takes as input a target image I, of size wi × hi

(note that we use grayscale input images since the produced per-
cept is colorless), and the patient parameters vector ϕ, of 13 ele-
ments, and introduces them in our transformer-based encoder. To

combine both modalities (image and vector), it is necessary to turn
I and ϕ into token embeddings of hidden dimension d.

In our proposed design, the number of image tokens from I co-
incides with the number of electrodes in the prosthesis. Let us as-
sume the size of the electrode grid is we×he. Then, the number of
image tokens will be we×he = Ne. Our same model would work
if we use another visual prosthesis: just the number of tokens in
the input sequence will change, making our approach straightfor-
wardly adaptable to different configurations. To obtain the token
embeddings, we pass I through a trainable CNN with convolu-
tional and pooling layers so that it is downsampled to we × he.
Then, the feature vector goes through a linear layer to obtain the
input image embeddings tensor, Ei, of shape Ne × d.

The patient vector ϕ is converted to additional token embed-
dings that will be introduced to the transformers as class tokens.
The number of parameter token embeddings will be two: one for
the three parameters related to the location of the implant in the
retina (ϕl), and other for the rest of patient-specific parameters
(ϕp). This allows the model to pay special attention to the location
of the phosphenes in the image and disambiguate this with pa-
rameters more related to the response to stimulation and collateral
distortion effects. Thus, we split the parameter vector ϕ in ϕl and
ϕp and pass both of them through several fully connected layers
of higher dimensions to finally output two vectors of dimension d:
El and Ep respectively.

Our transformer block is a Vision Transformer (ViT) [4],
whose inputs are El, Ep and Ei. We take each of the out-
put embeddings corresponding to the image tokens (and there-
fore, phosphenes) and pass them through a multi-layer perceptron
(MLP) to finally obtain a 3-dimensional vector for each phosphene
that corresponds to the pulse duration, frequency, and amplitude
of the stimulus, respectively. Those stimuli are passed through the
decoder, along with ϕ, producing the output percept Î.

To train this model, we propose using a reconstruction loss de-
fined as follows:

Lreconstruction =
1

N

N∑
i=1

(
Î∗
i − I∗

i

)2

(1)

where I∗ is the target image normalized by its average value,



Î∗ is the predicted image normalized by its average value, and N
is the number of pixels in the images. This loss function employs
normalized images to emphasize the relative intensities between
the target (I∗) and predicted (Î∗) images, rather than focusing
solely on individual pixel values.

3. Results
In this section we show some experimental results in different
datasets to show the effectiveness of our approach. For this study,
replicating the experimental setup from [7], we conducted exper-
iments using a visual prosthesis model with 225 phosphenes ar-
ranged in a 15×15 rectangular grid. Each phosphene had a radius
of 75µm and was spaced 400µm apart. The model was evaluated
using two datasets: MNIST, which served as a baseline for com-
paring our results with those in [7], and CIFAR-10 [9], a more
complex and diverse dataset that better simulates the variety of vi-
sual experiences a prosthesis user might encounter in real-world
scenarios.

In both datasets, input images are grayscaled and resized to
30 × 30, before being introduced to the CNN. The CNN has four
convolutional layers followed by a max pooling layer, so that it
outputs a feature vector of 15 × 15 × 64. This vector is reshaped
to 225 × 64 and passed through a linear layer to obtain the final
desired shape of Ei (225 × d). The parameter vectors ϕl and ϕp

are processed through four fully connected layers, each with 1024
neurons, ultimately yielding d-dimensional embedding vectors El

and Ep.
Next, the reduced image is fed into a ViT, where the patient-

specific parameter vectors are incorporated as class tokens. We
experimentally choose a hidden dimension of d = 128. The out-
put of the transformer retains a 128-dimensional hidden represen-
tation per phosphene. Subsequently, the patient parameter embed-
dings El and Ep are concatenated into a single 256-dimensional
vector, which is then reduced to d′ = 16 dimensions through a lin-
ear layer. The 16-dimensional vector is concatenated with each of
the 225 (15×15) phosphene representations from the output of the
ViT as shown in Fig. 1, effectively reintroducing patient-specific
information at this stage. Finally, a multi-layer perceptron (MLP)
is applied, reducing the 128 + 16 channels to 3 output channels
per phosphene, corresponding to the stimulation parameters.

For the MNIST dataset, we trained the encoder using the nor-
malized L2 loss between the decoder output and the target image
as the objective function. The encoder was trained for 20 epochs
with a batch size of 16, using a cosine learning rate scheduler with
initial learning rate of 1e-3. This training approach resulted in an
L2 loss value of 0.032, representing an improvement over the pre-
viously reported perceptual loss of 0.05 in [7]. Additionally, we
evaluated our trained encoder using a pretrained MNIST classi-
fier with 98.65% accuracy. Our encoder achieved an accuracy of
97.45%, surpassing the previous model, which had an accuracy of
95.6%.

For the CIFAR-10 dataset, we employed the same architecture,
but used different training parameters. The encoder was trained for
100 epochs with a batch size of 64 and a fixed learning rate of 2e-
4. Although we do not have a direct comparison, the normalized
L2 loss achieved was 0.033. In Fig. 2 there are some qualitative
examples from both datasets.

4. Discussion
Our experiments highlight the significant potential of Vision
Transformer (ViT) architectures in enhancing image processing
for prosthetic vision. By effectively combining spatial information
with patient-specific parameters, our approach has shown notable
advancements in image reconstruction. Specifically, we achieved
an L2 loss of 0.032 on the MNIST dataset, outperforming previous
methods. Moreover, our model has demonstrated its capability to
handle images from the CIFAR-10 dataset.

However, the model produced blurred reconstructions for com-
plex images from the CIFAR-10 dataset. This suggests that future
training should focus more on task-specific optimization to better
align with user requirements. Additionally, incorporating image
pre-segmentation techniques could potentially enhance the recon-
struction fidelity of target images.

Future work will focus on addressing model limitations and im-
plementing Bayesian optimization to refine hyperparameters and
enhance calibration processes. Additionally, we will conduct ex-
periments to evaluate the impact of these improvements on user
experience.

Overall, this research advances the field of visual prosthet-
ics by enhancing image processing techniques and incorporating
patient-specific parameters. These contributions are expected to
improve the practical applicability of visual prostheses, providing
users with higher-quality visual information.
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